Calcium polysulfide treatment of Cr(VI)-contaminated soil.
نویسندگان
چکیده
Batch treatability studies for a Cr(VI)-contaminated glacial soil from a Cr plating facility were conducted using 1X and 2X the stoichiometric ratio of calcium polysulfide (CPS). The pH of the treated soil increased from 6 to 11 upon CPS addition, but progressively returned to 8-8.5 over the course of 1 year. The 1X dosage maintained a highly reducing environment up to 21 days of monitoring with the samples exposed to atmospheric oxygen, while 2X was reducing up to 180 days of curing. The EPA regulatory method for solid Cr(VI) could not reliably predict Cr(VI) in the treated solid due to ongoing reduction during the test. SPLP results showed that the CPS created an apparent Cr(VI) mobilization during the first 60 days of treatment, with subsequent decrease in soluble Cr(VI) up to 1 year of monitoring. Synchrotron micro-X-ray analyses at 60 days curing showed that Cr(VI) was predominantly bound as highly insoluble PbCrO(4) that precipitated in the interstitial pores of the soil, with very little to no Cr(VI) associated with the abundant iron oxyhydroxides. Despite its spatial accessibility and due to its low solubility, PbCrO(4) was recalcitrant to treatment, which proceeded only very slowly as judged by the SPLP data. It is concluded that, while CPS has a long residence time in the environment and is a promising reductant, in situ reduction is not an efficient treatment method for soils with highly insoluble Cr(VI) compounds, especially in surficial layers such as the one studied.
منابع مشابه
Polysulfide speciation and reactivity in chromate-contaminated soil.
Calcium polysulfide (CPS) has been observed to maintain a reducing capacity for prolonged time periods when used to treat Cr(VI)-contaminated soils. This study utilized bulk and micro-X-ray absorption near edge structure (XANES) spectroscopy to investigate sulfur speciation in soil samples treated with CPS in batch and column studies and to determine the source of the reducing potential. Bulk X...
متن کاملInvestigation of the Efficiency of Various Concentration of Organic Compounds in the Bioaugmentation Process for Reduction of Hexavalent Chromium in Soil
Background: Cr (VI) is a highly toxic and carcinogenic contaminant and that are used in the steel industry and other chemical industries such as the leather industry, pigment production, electroplating of metals and the production of anticorrosive compounds. Its waste enters the environment and subsequently enters the water and food sources. Therefore, in order to protect the environment as wel...
متن کاملReduction of chromium toxicity by applying various soil amendments in artificially contaminated soil
Six soil amendments including municipal solid waste compost (MSWC), coal fly ash (CFA), rice husk biochar prepared at 300°C (B300) and 600°C (B600), zerovalent iron (Fe0), and zerovalent manganese (Mn0) were evaluated to determine their ability to reduce mobility of chromium (Cr) in a Cr-spiked soil. The Cr-spiked soil samples were separately incubated with selected amendments at 2 and 5% [weig...
متن کاملThe effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils.
This paper compared the effectiveness of four organic materials for decreasing the amounts of soil extractable Cr(VI) in Cr(VI)-contaminated soils using the DOWEX M4195 resin-extraction method. Organic matters were added into Cr(VI)-spiked soils [500 mg Cr(VI)(kgsoil)(-1)] in the form of sugarcane dregs compost (SCDC), cattle-dung compost (CDC), soybean meal (SBM) and rice bran (RB), in the amo...
متن کاملCr(VI) resistance and removal by indigenous bacteria isolated from chromium-contaminated soil.
The removal of toxic Cr(VI) by microorganisms is a promising approach for Cr(VI) pollution remediation. In the present study, four indigenous bacteria, named LY1, LY2, LY6, and LY7, were isolated from Cr(VI)-contaminated soil. Among the four Cr(VI)-resistant isolates, strain LY6 displayed the highest Cr(VI)-removing ability, with 100 mg/l Cr(VI) being completely removed within 144 h. It could e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of hazardous materials
دوره 179 1-3 شماره
صفحات -
تاریخ انتشار 2010